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 Econometrica, Vol. 45, No. 2 (March, 1977)

 CHARACTERIZATION OF SATISFACTORY MECHANISMS FOR

 THE REVELATION OF PREFERENCES FOR PUBLIC

 GOODS

 BY JERRY GREEN AND JEAN-JACQUES LAFFONT'

 Social decision mechanisms that admit dominant strategies and result in Pareto optima
 are characterized by the class of mechanisms proposed by Groves. The concept of decision
 mechanisms is generalized and the characterization is shown to extend to these cases.

 PROBLEMS CONNECTED WITH social decision processes in models with public

 goods have troubled economists for some time. Recently a negative result of
 Gibbard [2] and Satterthwaite [6] precluded the possibility of finding non-
 dictatorial deterministic mechanisms for choosing social states which have the
 property that individuals believe it to be impossible to manipulate the mechanism
 to their own advantage. They may, in particular, reveal preferences other than
 their own, and the resulting social choice may then be distorted away from the
 Pareto optimum relative to their true tastes.

 Gibbard and Satterthwaite's requirements are quite strong. In particular,
 arbitrary individual preferences are allowed. In a more specialized context,
 where the decision concerns the level of public goods and monetary transfers
 among individuals, Groves [3] and Groves and Loeb [5] assumed that preferences
 are monotonic in income and that the willingness-to-pay for alternative levels of
 the public good is independent of income. In such environments they found a class
 of mechanisms with the properties that stating one's true preferences is a
 dominant strategy for each individual and that a Pareto optimum is selected.

 In this paper, we show that the mechanisms proposed by Groves and Loeb are
 the only ones which have these desirable characteristics. This result enables us to
 concentrate the search for optimal mechanisms within this class and to use criteria
 other than individual incentive compatibility to distinguish among these. We have
 pursued this direction in other papers. In addition, we show that well-defined
 mechanisms which select Pareto optimal outcomes (referred to as satisfactory
 mechanisms), independently of the question of truthful revelation, are essentially
 isomorphic to the mechanisms proposed by Groves.

 Section 1 sets forth notation and the basic definitions. Section 2 provides, in a
 world of separable utility functions, a complete characterization of satisfactory
 mechanisms. In an appendix we show the non-existence of satisfactory mecha-
 nisms when nonseparable utility functions are allowed.

 1 We are grateful to the referee for his comments. This research was supported under National
 Science Foundation grant SOC71-03803 to Harvard University and GS 40104 to the Institute for
 Mathematical Studies in the Social Sciences at Stanford University.
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 428 J. GREEN AND J.-J. LAFFONT

 1. DEFINITIONS

 A. Public Projects

 We are concerned with the realization of a package of public projects in an
 economy with a unique private good (which can be thought of as money) and N
 agents. The only restriction imposed in the analysis on the public projects is that
 the set of available public project packages be a compact set JC in a topological
 space. Examples include: (i) a fixed-size unique public project; then J = {O, 1}
 where 1 represents the realization of the project and 0 the nonrealization; (ii) a
 variable-size unique public project; then the allowable size should belong to a
 bounded closed subset of R; for example, XK= 0 u [K1, K2] if a minimal size is
 required technologically or 91 = {0, K1, . . . , KL}, if indivisibilities exist; (iii) a set
 of L variable size public projects; then, for example, .7C = Hl'1 [0, KI]; (iv) a
 compact set of functions (e.g., tax laws); then, for example, 9 = W[O, 1], set of
 continuous real functions on the interval [0, 1], and so forth.

 Let K be an element of Y(.

 B. Transfers, Utility Functions, and Valuation Functions

 Simultaneously with public goods, we consider monetary transfers ti, i
 1, .. , N, so that starting from an initial position the gain in utility of agent i due to

 a program of public projects and transfers is: ui (K, ti) defined on J x R.

 DEFINITION 1: The utility function ui is said to be (additively) separable iff

 ui(K, ti) = vi(K) + ti.

 The function vi( ), which is considered net of the imputed costs (defined ex
 ante) of the project, is referred to as the valuation function of agent i. The
 assumption of separability amounts to absence of income effect in the evaluation
 of public goods.

 The paper, with the exception of the appendix, is concerned only with separable
 utility functions; most definitions apply to this case with trivial generalizations for
 the general case.

 C. Mechanisms

 In order to solve the free rider problem we subject the N agents to a game which
 is played according to the following rules (or mechanisms):

 Let Si, i = 1,. . . , N, be the strategy space of agent i, and let S = Ili=1 Si. A play
 of the game is an element s = (S, ... , SN) = S.

 The outcomes of the game are defined by two functions: (i) For each play, a
 decision function d( * ) from S into X specifies a public project decision. (ii) For
 each play, a transfer rule t( * ) = [t1( *),.. , tN( )] from S into RN specifies a
 program of transfers.

 Letf( )=[d( ),t( )
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 REVELATION OF PREFERENCES 429

 The game can be played with different levels of information concerning the
 actions of the other players. If the actions of the other players are known, the
 outcome of the game may be a Nash equilibrium. If they are unknown, the agents
 may play a maximin strategy or maximize their expected utility with given
 subjective probability distributions over the actions of the others. In all the games
 considered in this paper, the optimal strategy is a dominant strategy (i.e., is
 optimal for any action of the other players); in this case, all these behavioral
 postulates regarding the players in the game are equivalent.

 We introduce now several sets of rules of the game.
 DEFINITION 2: A mechanism, M= (S, f), is a set of strategy spaces Si, i =

 1, ...,N, and a function f( )=[d( ),tl(),...,tN(*)] from I$= 1S =S into
 J( x RN such that for a play s: (i) the accepted project is d(s), and (ii) the transfer

 to agent i is ti(s) for i = 1, . . ., N.

 DEFINITION 3: A revelation mechanism, RM = { V, f}, is a mechanism for which
 a strategy is a valuation function of the public project and a strategy space

 i= V{2 is a space of allowable valuation functions.

 In a revelation mechanism, the question to the agent is: what is your valuation
 function? Clearly, such a mechanism can be used only if agents have separable
 utility functions. Only then is it meaningful to ask for the evaluation of a public
 project independently of the specification of the transfer. We denote by wi(* ) the
 answered valuation function which may be different from the true one vi (*). Let

 W( *) = [Wl( *), . ,WN( )]-

 DEFINITION 4: A direct revelation mechanism, DRM= {V, f}, is a revelation
 mechanism such that: d (s) = d (w( * )) E {K*K* e 51( and Xwi(K*) = max Xwi(K),
 Ke I}.

 The selection of d(w(* )) made in the set of projects which maximize the sum
 of valuation functions is arbitrary; it will be also denoted by K*(w(. )). A
 necessary condition to use such a mechanism is that the set of maximizing projects
 be non-empty. Since Yf is a compact set, a sufficient condition is that the valuation
 functions be restricted to be upper semi-continuous (u.s.c.) on X.

 DEFINITION 5: A Groves mechanism, GM ={V, f}, is a direct revelation
 mechanism with a specific transfer rule:

 t w 1 - )) = v w-.. 1K*(w ... 1 ))) + hi (w-i \3

 Vi = I V= and V=fli=i Vi.
 ,ii

 3By definition Xw-i = w; and hi(w-j) = hi(ww, . . ., Wi-1, wi+1 .... WN). Clarke [1] intro-
 jOi

 duced independently one element of this family for which hj(wj( *))=-w-j(K t*(w-j *))) where
 K:** maximizes Xw-i ( - ). Vickrey [7] gave a similar mechanism for the case of private goods to avoid
 speculative behavior.
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 430 J. GREEN AND J.-J. LAFFONT

 where hi(w_( )) is an arbitrary deterministic function of w_(), i = 1,... , N.

 We also need a concept close to a Groves mechanism, in which transfers and
 decisions are not uniquely defined.

 DEFINITION 6: An extended Groves mechanism, EGM = { V, F}, is a set of

 allowable valuation functions Vi, i = 1, . . . , N, a decision correspondence D( )
 from V into X such that: each selection d ( ) e D( ) maximizes : wi (); a set of
 arbitrary deterministic correspondences Hi( ) from V-i into R, i = 1, ... , N,
 such that: ti(w( ))=:w-i(K*(w( )))+hi(w-i( )) where hi(*)EHi((), i=
 1,.. .,NandK*(w( )) ED(w( )).

 Similarly, in an extended (direct) revelation mechanism, the decision and
 transfers applications are multivalued: d( * ) E D( *); ti( *) e Ti( ), i = 1,... , N.
 Moreover, in an extended direct revelation mechanism each d( ) E D( * ) max-
 imizes the sum of the answers.

 D. Properties of Mechanisms

 In designing mechanisms we are interested in different properties gathered
 below for convenient reference.

 Given a mechanism, let i (vi ( * )) c Si be the set of dominant strategies of agent
 i when his true valuation function is vi ( * ).

 DEFINITION 7: A mechanism is said to be decisive iff

 Vi, Vvi(* ) E Vi: i(vi(v *)) $ 0.

 Then, S - )E vi !2i(vi( )) is the set of observable strategies of agent i. Let
 - =llf i;

 DEFINITION 8: A mechanism is said to be successful if, whenever s =

 (sl,.. ., SN) and si is an optimal strategy for player i, whose true preferences are vi,
 then d(s) maximizes Evi( * ).

 In the particular case in which the mechanism is decisive as well as successful, so

 that the property of successfulness holds at all combinations of dominant
 strategies, we will refer to it as satisfactory. Satisfactory mechanisms are desirable
 because they select efficient outcomes while at the same time eliminating any
 strategic interaction among the agents because dominant strategies exist.

 The utility of the play s with the mechanism M can be written (without fear of

 confusion) for individual i as:

 ui(s; M) = v(d (s)) + t (s).

This content downloaded from 
������������128.103.147.149 on Mon, 25 Jan 2021 21:15:26 UTC������������ 

All use subject to https://about.jstor.org/terms



 REVELATION OF PREFERENCES 431

 DEFINITION 9: A revelation mechanism is strongly individually incentive com-
 patible (s.i.i.c.), if the truth is a dominant strategy for each individual, i.e.,

 ui(w_*(.),vJ(*);RM) >tui(w-i(.),wi();RM) Vw_i( )E V-i,Vv(*)E Vi.

 In the sequel, if we have in J( the no-action program denoted as 0, by definition,
 vi(O) = 0, i = 1, ... , N. In a revelation mechanism for which 0 E JE, we say that a
 strategy wi( ) is normalized if wi(0) = 0. If all the strategies are normalized, the
 revelation mechanism is said to be normalized.

 2. CHARACTERIZATION OF SATISFAcrORY MECHANISMS

 In a world of separable utility functions, we show first that all the s.i.i.c.
 successful revelation mechanisms are Groves mechanisms and, then, that all the
 satisfactory mechanisms are isomorphic to (extended) Groves mechanisms.

 THEOREM 1 (Groves and Loeb [5]): A Groves mechanism is s.i.i.c.

 PROOF: For any w-i ( * ) e V-i and any wi ( * ) E Vi, ui (w-i ( * ), vi(); GM)
 -ui(w_i(*), wi(*); GM) = vi(K*(w-i(*), vi *)))+Xw_i(K*(w_i(*), vi( )))
 + hi (w_i f *))-vi (K*(w_i f ), wi f *)))-Xw_i (K*(w_E ( *), wi f )))-hi (w_i f ))
 = maxKEX[vi(K) +Ewi(K)]-[vi(K*(w-i(*), w&( ))) +w_i (K*(w_1(*),
 w i ( * ))) o O. Q.E.D.

 THEOREM 2 (Groves [4]): The set of dominant strategies for a Groves mechanism

 is {vi ( ( ) +ai} where ai, i = 1, . . . , N, are arbitrary constants. There is a unique
 normalized dominant strategy corresponding to ai = 0, i = 1,. . ., N.

 PROOF: Suppose that there exists a dominant strategy, say v( * ), which is not of

 the form vA * ) + ai. Then, there exist e > 0, a, K* e X, and K** E X such that:

 v i(K*) = Vi (K*) + a

 and

 vi(K**) = vi (K**) +a + e.

 Choose w-i( * ) u.s.c. such that:

 Ew-i(K*) = -vi(K*) -a,

 Ew-i (K**) = -vi (K**) -a - C/2,

 and

 Ew-i(K) = -sup [sup vi (K), sup v '(K)] - a - E

 for K E X, K # K*, K $ K**. Clearly, the answer vi (* ) leads to the project K* and
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 432 J. GREEN AND J.-J. LAFFONT

 the answer v(*) leads to the project K**. Moreover, we have:

 vi (K*) + Zw-i (K*) > vi (K**) + Ew-i (K**);

 therefore, v(*) is not a dominant strategy, a contradiction. All the dominant
 strategies must then be of the form {vi ( ) + ai }. From Theorem 1, they are indeed
 dominant strategies.

 Finally, a normalized strategy for agent i is such that wi (0) =0. Since by
 definition vi (0) = 0, ai = 0 for a normalized dominant strategy. Q.E.D.

 COROLLARY 1: A Groves mechanism is successful.

 PROOF: From Theorem 2 and the definition of a Groves mechanism we know
 that the decision taken maximizes the sum of the valuation functions. Q.E.D.

 COROLLARY 2: The set of dominant strategies for a s.i.i.c. revelation mechanism
 is included in the set {vi ( * ) + ai } where ai, i = 1, . . . , N, are arbitrary constants.
 There is a unique normalized dominant strategy corresponding to ai =0, i=
 1, ~... , N.

 PROOF: As in Theorem 2, we show first that a dominant strategy for agent i
 must be of the form {vi ( * ) + ai }. vi ( * ) is a dominant strategy since the mechanism
 is s.i.i.c. As in Theorem 2, it is also the only normalized dominant strategy.

 Q.E.D.

 DEFINITION 10: A direct revelation mechanism satisfies Property A, if and only
 if: for any i = 1, ... , N, (i) ti(w )) is independent of wi( * ) at K*, i.e., if for
 w_i( * ,wi( * ,wi( * ,K*(w-i( * ,wi( *)=K*(w-i( * ,w!( *),then ti(w-i( *)
 wi(*)= ti (w-i(*) w'(*);i) ti (w-i(*) wif *)ti (w-i( w ),Wi )=w-i (K*)
 - Iw_1(K*') where K* maximizes I w-i(K) + wi(K) over 7( and K*' maximizes

 (K) + w'(K) over 2f.

 LEMMA 1: A direct revelation mechanism is a Groves mechanism if and only if it
 satisfies Property A.

 PROOF: Obvious.

 We are now able to prove the main characterization theorem.

 THEOREM 3: A s.i.i.c. direct revelation mechanism is a Groves mechanism.

 PROOF: We consider in turn the negation of the two parts of Property A. If (i)
 fails there exist w_i(), wi(*), and w(*) which lead to the same K* such that

 ti(w_i( Wi( > ti(w_i( Wi(

 Let vi( *) w!'(I*)
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 REVELATION OF PREFERENCES 433

 Then, t (w-i(*), wi( ))+vi(K*)>ti(wi( *), vi( ))+vi(K*); vi( ) is not a
 dominant strategy, a contradiction.

 If (ii) fails, there exist w-i(*), wi(*), and w(*) such that: K* maximizes
 w-i(* ) + wi ) over 7f, K*' maximizes Xw-( ) + w!( ) over JC, and ti(wi),
 Wi* ))ti(w (), wi( ))=w_i(K*) -w-i(K* )+e for some e >0.

 Let w- be defined as

 w i(K*) = -Ew_i (K*),

 w i'(K*') =-Ewi (K*') + a with 0<8<E,

 and

 wi(K) =-c for K#K* or K*' with c >maxEw_i(K)
 KeX

 where wi'() is upper semi-continuous.

 Note that max wi (K) + Xw i(K) is solved at K = K*' and, therefore, by the first
 part of the proof,

 We have that

 ti (w-i*) wif *)ti (w-if *), wi( * ) w-i (K*) - Ew-_(K*l) +

 =ws'(K*)+w- '(K*')+ s- S.

 Therefore,

 ti (w-i *) wi( *)+ W I'(K*) > ti (w-i *) w'( )+i7'(K*').

 Hence, when vi( ) 3 '( * ), the announcement of wi() will be superior which
 contradicts the fact that the mechanism is s.i.i.c. Q.E.D.

 COROLLARY 3: If announced valuation functions are restricted to the class of
 continuous functions,4 the family of Groves mechanisms is identical to the set of all
 s.i.i.c. direct revelation mechanisms.

 PROOF: It is only required to show that w'( ) in the proof of Theorem 3 can be
 chosen continuous and so that (i) K*' maximizes W-( * )+Ew-i(*) over K, (ii)
 w i K*) = -Xw-i (K*), and (iii) wi?(K*') =-1w-i (K*') + 8.

 4The public project under consideration is part of the larger economic system. If individuals
 recognize this, they may also evaluate various levels of the public project in the light of their
 predictions about equilibrium prices that would arise in these cases. It is known that the set of
 equilibria behaves only upper semi-continuously as the parameters are varied; and in this case we
 can treat the social decision about the public projects as a parameter of the private goods equilibrium.
 Due to potential discontinuities in the set of equilibria, we may expect corresponding discontinuities in
 willingnesses to pay for marginal units of the project, even if there are no income effects on the demand
 for the project itself.
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 J. GREEN AND J.-J. LAFFONT

 Let 7 > 0 be such that ql < K* -K*'I and

 wi(K) = -w_i(K) for Ki[K*'-r, K*' + ],

 =-Ew_-(K)+8(1- -K) for Ke[K*'-r,,K*'+r].
 By construction wi( ) is continuous since wi( *), j $ i, are continuous and satisfy
 (ii) and (iii). Moreover, it is easy to see that (i) is also satisfied since we always have

 wi(K)+ w_-(K)<8 for K K*'. Q.E.D.

 THEOREM 4: A successful s.i.i.c. normalized revelation mechanism is a nor-
 malized Groves mechanism.

 PROOF: Since the revelation mechanism is s.i.i.c. and normalized, agents will
 answer their true valuation function vi( ), i = 1, ..., N, by Corollary 2. Since it is
 successful, we can say that the decision is taken by maximizing the sum of the
 answers. Therefore it is a direct revelation mechanism. Hence, the result by
 Theorem 3. Q.E.D.

 We now extend the characterization to satisfactory mechanisms.

 THEOREM 5: A satisfactory mechanism (S, f) which satisfies the property of
 uniqueness of dominant strategies is such that there exist

 i, i = 1,. .., N, where i: S'i- Vi

 and a-normalized Groves mechanism, NGM = { V, g} such that

 f(s) = g[plI(s1), ..., ,N(SN)].

 PROOF: Let i (vi( · )) be the unique dominant strategy of agent i when the truth
 isvi(.),i=l,...,N.

 From the mechanism (S, f), we construct a normalized revelation mechanism
 (V, 4) as follows: Let 4(w( · )) =f[ I(w( ))] for any w( ) E Vwhere V= TrVi, the
 space of u.s.c. normalized valuation functions. The revelation mechanism (V, 4() is
 well-defined since i(vi( · )) is a singleton for i = 1,..., N.

 We want to show that (V, 4) is s.i.i.c. Suppose it is not. For some vi( *), w-i( ),
 there exists wi( *) vi( * ) with & (w-i( ), wi( )) preferred by individual i to
 O(wi( . ), v( )), i.e., f[-_i(w_i( )), j(wi(- ))] preferred.to f(_-i(w_-( )),
 !i(vi( ))] where

 _-i(w-,( *)) = [31(w1( *)),...., .-i(wi-( *)), S (w1(. *)),**...,
 (N(WN( ))];

 therefore,

 uwhich c dicts )), i(w(the )); {tS, }) > )) uis a domi )), istraeg. *)) {S, f})

 which contradicts the fact that 2i(vi( *)) is a dominant strategy. Also (V, q) is

 434
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 REVELATION OF PREFERENCES

 successful since it has the same outcomes as (S, f). Therefore, it is a successful
 s.i.i.c. normalized revelation mechanism and, consequently, a normalized Groves
 mechanism from Theorem 4.

 Finally, to show that i'( . ), i = 1,..., N, exist as functions we prove that i is
 univalent for i = 1,..., N. Suppose 3i is not univalent. Then, there exist vi( ) and
 vi( ) in Vi, with vi( ) vi( ') such that Oi(vi( ))= i(v'( )). By definition
 vi(O) = vi(0) = 0, but since vi( ) $ v'i( ), there exists K E ., different from zero,
 such that vi(K) vi(K).

 Without loss of generality, let K* be such that

 vi (K*) - v (K*) = E.

 Let A = sup [supK,E- vi(K), SUPKEX v (K)].
 We can choose v_i( ) such that:

 v-i (K*) =-v(K*) -

 Ev-i(O) = O, and

 Zv-i(K) =-A -.

 Then, clearly,

 Ev-i(K*)+vi(K*) >v-i(K)+vi(K) VK E Y, K K*,
 and

 Ev-i(O)+vi(O) >2v-i(K)+v(K) VKcE7, KKO.
 Therefore, we are able to construct (vi( )) such that [v-i( ), vi( )] and

 [v-i( v), vi( )] should lead to different decisions under the Pareto criterion, and
 they do not, contradicting the successfulness of (V, cq).

 Therefore, (i( ) is univalent for i = 1,..., N. If we define Pi = i-( *) from S!
 into Vi, then,

 g[p1(sl), ... , N(SN)] = f[' *[(S, . . . , fN * lN (SN)] =f(s).
 Q.E.D.

 If the assumption of uniqueness in Theorem 5 is left out, it is only possible to
 obtain a weaker characterization. Indeed, consider the following example.

 Let .X = {0, l},,Si =R2, Si = (sil, Si2), i = 1, ..., N, and define the mechanism as
 follows:

 d(s)=l if Esil>O,

 =0 if Zsil<O,

 ti(S) = S-il +S-i2 if d(s)=1,

 =Es-i2 if d(s)=O, for i=1,...,N.

 Then, the set of dominant strategies is:

 1i(Vi( )) = {(Si , Si2) E R2Isil = Vi(l)}.

 435
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 J. GREEN AND J.-J. LAFFONT

 Therefore, this mechanism cannot be expressed as g[r(s)] for any Groves
 mechanism since ti(s), i = 1,..., N are not constant over IiN=li(vi( * )).

 However, all satisfactory mechanisms can be shown to be isomorphic to
 extended Groves mechanisms.

 THEOREM 6: Let (S, f) be a satisfactory mechanism. Then, there existfunctions ti
 from S1 into Vi, i = 1,..., N, and an extended normalized Groves mechanism
 (V, G) such that:

 U f(s')=G[tl(s1),... qN(SN)]
 s'eS(s)

 where S(s) = {s'ls and s' belong to the same i(w( ))}.

 PROOF: It is a matter of routine to check that Theorem 2, Theorem 3, and

 Theorem 4 are true for extended (direct) revelation mechanisms. The proof then
 follows the lines of the proof of Theorem 5 with some differences noted below.
 Now, 2i(vi'( )) is the set of dominant strategies of agent i when the truth is vi( ),
 i = 1,..., N. We construct an extended normalized revelation mechanism as
 follows. Let Vi be the set of normalized u.s.c. valuation functions and let

 p(w('))=f[(w(' ))] Vw( )e V.

 (P is now a correspondence with two properties: slE (v( ()) and s2 E 3(v( ))
 implies that both d(s1) and d(s2) maximize i;vi( ), otherwise the mechanisms
 would not be successful.

 Also, vi(d(sl))+ Ti(s) = i(d(s2))+ Ti(s2).
 Otherwise there would exist ti( ) E T( . ) such that, without loss of generality:

 vi(d(s1)) + ti(s1) > vi(d(s2)) + ti(s2)

 and then s2 would not be a dominant strategy for agent i.
 As in Theorem 5, it is shown that (V, QP) is s.i.i.c. By Theorem 4, (V, P) is then

 an extended normalized Groves mechanism.

 Now, if vi( *) ) vi( ) then i(vi( )) n Oi(v( )) = 0. Suppose, on the contrary,
 that there exists si E (i( i )) ni(vi( * )). Then, vi( *) and v( ) may lead to the
 same project K*. As in Theorem 5, we can choose Sw-i( ) such that vi( ) and
 v i( ) should lead to different projects, contradicting the successfulness of (V, P).

 It is therefore possible to define the function i( * ) = i1( * ), i = 1,... , N,
 which is such that: i * Xi1(si) = Si(si) = {si1si and s! belong to the same i)i(v )}.
 Then,

 ([dl(sl),., , N(SN)] = f[l' S )1 ,., . . , N (SN)]
 = U f(s). Q.E.D.

 s'eS(s)

 Harvard University
 and

 Ecole Polytechnique

 Manuscript received September, 1974; last revision received March, 1975.
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 APPENDIX

 We show the non-existence of successful s.i.i.c. direct revelation mechanisms for the fixed-size

 unique public project case when preferences are not separable. Now, in defining normalized revelation
 mechanisms, the question is: What is your utility function normalized in such a way that the utility of
 "no project and transfer t" equals the transfer t. For a separable utility function we had:

 ui(O, ti)=ti,

 ui(1, ti) = ti + vi, Vi E R.

 An example of a nonseparable normalized utility function is:

 ui(O, ti) =ti

 ui(1, ti) = ti +vi(ti), vi( ) u.s.c. onR.

 For the separable case, the evaluation of the project is a constant; it is a function of the transfer for the
 nonseparable case.

 Finally, when utility functions are nonseparable, we must change slightly the notions of successful-
 ness and incentive compatibility. We say that a DRM is successful if for any transfer program
 (tl, ..., tN), f(w( *)) maximizes Ef=l ui(w( );DRM). We say that an RM is s.i.i.c. if the true
 normalized utility function is a dominant strategy. We can now formulate the following theorem:

 THEOREM 7: If the space of allowable evaluations of the project includes all constantfunctions (of the
 transfer), and the step functions with values a and b, b > a, for transfers above and below the level x, then
 there exists no successful normalized s.i.i.c. revelation mechanism.

 PROOF: We prove the theorem by providing a counterexample. Consider the following two agents:
 Agent 1 is such that

 U (0, tl) =t,

 Ul(1, tl)= t+c.

 He has a separable utility function. Agent 2 is such that

 U2(0, t2) = t2

 u2(1, t2) = t2+a if t2<x,

 =t2+b if t2 x, witha<b.

 Agent 2's evaluation of the project increases when the transfer he receives reaches a threshold value.
 Here the DRM associates to a value (c, a, b, x) a vector (d, t1, t2) {0, 1} x R x R, where d is the
 decision and (t1, t2) the transfers received.

 Let us consider a particular combination (a, b, c) which remains fixed for the rest of the argument
 and such that: a +c < 0, b +c >0, c <0, and let x vary.

 Successfulness means here that

 if t2 < x then d = 0 since a + c < 0, and

 if t2>x then d=1 since b+c>0.

 We prove that there exists no successful s.i.i.c. DRM by contradiction in a sequence of lemmata.

 LEMMA 1: It is not true that the project is accepted for all x.

 PROOF: Whenever the project is accepted t2>x by successfulness. Then, there would be an
 incentive to set x high to force a high t2 (since u2(1, t2) is increasing in t2), contradicting s.i.i.c.

 Q.E.D.

 LEMMA 2: It is not true that the project is rejected for all x.

 PROOF: If so, the transfer to Agent 2 would be given by a function t2(x) which would be everywhere
 below x. Clearly, no constant function has this property. Let x' and x" be such that t2(x') < t2(x"); then if
 the true tastes are at x', the individual has an incentive to use x" instead (since u2(0, t2) is increasing in
 t2). Q.E.D.
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 Let X be the set of x that lead to acceptance and X' be the complement of that set.

 LEMMA 3: The transfers to Individual 2 must be constant on X and X'.

 PROOF: If not (say on X), then if the true x0 E X were associated with a lower transfer than some
 other x1 E X, the statement x1 would be better than x0 since the transfer would be higher and, since
 u2(1, t2) is increasing in t2, contradicting s.i.i.c.
 In the case of X' the same argument holds. Q.E.D.

 Take x eX and x' X'.

 LEMMA 4: t2(x) = t2(x') + c.

 PROOF: First, let us compare the transfer with the statement (a, b, x) to the transfer with the
 constant statement e, such that e > -c. These transfers must be equal for, if they were higher at
 (a, b, x), then (a, b, x) would be answered instead of e when e was true, and vice versa (since u2(1, t2) is
 increasing).

 By a similar argument, we note that the transfer at (a, b, x') must equal that at constant statements e'
 such that e'< -c.

 Then, by Theorem 2 and Lemma 1 (Section 2), we know that transfer at e ¢ -c is equal to that at
 e' <-c plus c. Q.E.D.

 We are now in a position to prove Theorem 7.

 PROOF OF THEOREM 7: By the above lemmata, we know that there exists a number t such that the
 transfer to Agent 2 throughout the region X is t + c and the project is accepted, and throughout X' it is
 t and the project is rejected. Moreover, since c < 0, t + c < t. Since the mechanism is successful, x E X
 implies that x < t +c for if x > t +c, then the preferences at t +c would lead to rejection rather than
 acceptance. Likewise, x' E X' implies x'> t.
 Therefore, letting x E (t+ c, 7), we obtain a contradiction to either x E X or i E X', and hence we

 contradict the fact that the mechanism produces a well-defined outcome. Q.E.D.

 REMARK: It is clear from the above proof that the constancy of the evaluations on the sets {t/t >, x}
 and {tlt <x} is not necessary to obtain the counterexample. The crucial feature is that u2(1, t2)=
 t2 + v2(t2) is increasing in t2.

 COROLLARY .4: Under the conditions of Theorem 7, there exists no satisfactory mechanism.

 PROOF: Note first that from an extended normalized revelation mechanism one can always select a
 normalized revelation mechanism. Suppose, then, that there exists a satisfactory mechanism. From the
 first part of Theorem 6 and the above remark, there exists a normalized successful s.i.i.c. revelation
 mechanism, a contradiction in view of Theorem 7.
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